PC-2DCOS: A Principal Component Base Approach to Two-Dimensional Correlation Spectroscopy

in: Applied Spectroscopy (2020)
Hniopek, Julian; Schmitt, Michael; Popp, Jürgen; Bocklitz, Thomas W.
This paper introduces the newly developed principal component powered two-dimensional (2D) correlation spectroscopy (PC 2D-COS) as an alternative approach to 2D correlation spectroscopy taking advantage of a dimensionality reduction by principal component analysis. It is shown that PC 2D-COS is equivalent to traditional 2D correlation analysis while providing a significant advantage in terms of computational complexity and memory consumption. These features allow for an easy calculation of 2D correlation spectra even for data sets with very high spectral resolution or a parallel analysis of multiple data sets of 2D correlation spectra. Along with this reduction in complexity, PC 2D-COS offers a significant noise rejection property by limiting the set of principal components used for the 2D correlation calculation. As an example for the application of truncated PC 2D-COS a temperature-dependent Raman spectroscopic data set of a fullerene-anthracene adduct is examined. It is demonstrated that a large reduction in computational cost is possible without loss of relevant information, even for complex real world data sets.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.