A comprehensive study of classification methods for medical diagnosis

in: Journal of Raman Spectroscopy (2009)
Bocklitz, Thomas W.; Putsche, Melanie; Stüber, Carsten; Käs, Josef Alfons; Niendorf, Axel; Rösch, Petra; Popp, Jürgen
In this model study, we developed a method to distinguish between breast cancer cells and normal epithelial cells, which is in principal suitable for online diagnosis by Raman spectroscopy. Two cell lines were chosen as model systems for cancer and normal tissue. Both cell lines consist of epithelial cells, but the cells of the MCF-7 series are carcinogenic, where the MCF-10A cells are normal growing. An algorithm is presented for distinguishing cells of the MCF-7 and MCF-10A cell lines, which has an accuracy rate of above 99%. For this purpose, two classification steps are utilized. The first step, the so-called top-level classifier searches for Raman spectra, which are measured in the nuclei region. In the second step, a wide range of discriminant models are possible and these models are compared. The classification rates are always estimated using a cross-validation and a holdout-validation procedure to ensure the ability of the routine diagnosis to work in clinical environments. Copyright _c 2009 John Wiley & Sons, Ltd.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.