Tunable metafibers: remote spatial focus control using 3D nanoprinted holograms on dualcore fibers

in: Light-Science & Applications (2025)
Sun, Jun; Lorenz, Adrian; Zeisberger, Matthias; Schmidt, Markus A.; Huang, Wenqin
The generation of tunably focused light at remote locations is a critical photonic functionality for a wide range of applications. Here, we present a novel concept in the emerging field of Metafibers that achieves, for the first time, fast, alignment-free, fiber-integrated spatial focus control in a monolithic arrangement. This is enabled by 3D nanoprinted intensity-sensitive phase-only on-fiber holograms, which establish a direct correlation between the intensity distribution in the hologram plane and the focus position. Precise adjustment to the relative power between the modes of a dual-core fiber generates a power-controlled interference pattern within the hologram, enabling controlled and dynamic focus shifts. This study addresses all relevant aspects, including computational optimization, advanced 3D nanoprinting, and tailored fiber fabrication. Experimental results supported by simulations validate the feasibility and efficiency of this monolithic Metafiber platform, which enables fast focus modulation and has transformative potential in optical manipulation, high-speed laser micromachining, telecommunications, and minimally invasive surgery.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.