Silicon nanowires terminated with methyl functionalities exhibit stronger Si-C bonds than equivalent 2D surfaces

in: Physical Chemistry Chemical Physics (2009)
Bashouti, Muhammad Y.; Paska, Yair; Puniredd, Sreenivasa Reddy; Christiansen, Silke; Haick, Hossam; Stelzner, Thomas
Silicon nanowires (Si NWs) terminated with methyl functionalities exhibit higher oxidation resistance under ambient conditions than equivalent 2D Si(100) and 2D Si(111) surfaces having similar or 10–20% higher initial coverage. The kinetics of methyl adsorption as well as complementary surface analysis by XPS and ToF SIMS attribute this difference to the formation of stronger Si–C bonds on Si NWs, as compared to 2D Si surfaces. This finding offers the possibility of functionalising Si NWs with minimum effect on the conductance of the near-gap channels leading towards more efficient Si NW electronic devices.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.