Quantitative dopant profiling in semiconductors: A Kelvin probe force microscopy model

in: Physical Review B (2009)
Baumgart, Christine; Helm, Manfred; Schmidt, Heidemarie
Kelvin probe force microscopy (KPFM) is used to investigate the electrostatic force between a conductive probe and nanostructured Si with shallow or buried selectively doped regions under ambient conditions. A unique KPFM model correlates the measured Kelvin bias with the calculated Fermi energy, and thus allows quantitative dopant profiling. We show that due to an asymmetric electric-dipole formation at the semiconductor surface the measured Kelvin bias is related with the difference between Fermi energy and respective band edge, and independent of the probe potential.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.