Optical sorting and detection of submicrometer objects in a motional standing wave

in: Physical Review B (2006)
Čižmár, Tomáš; Siler, Martin; Šerý, Mojmír ; Zemánek, Pavel; Garces-Chavez, V ; Dholakia, Kishan
An extended interference pattern close to the surface may result in either a transmissive or an evanescent surface field for large-area manipulation of trapped particles. The affinity of differing particle sizes to a moving standing-wave light pattern allows us to hold and deliver them in a bidirectional manner and demonstrate experimentally particle sorting in the submicrometer region. This is performed without the need of fluid flow (static sorting). Theoretical predictions support the experimental observations that certain sizes of colloidal particles thermally hop more easily between neighboring traps. A generic method is also presented for particle position detection in an extended periodic light pattern and applied to characterization of optical traps and particle behavior.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.