Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers

in: ChemPhysChem (2008)
Fölling, Jonas; Belov, Vladimir N.; Riedel, D. ; Schoenle, A.; Egner, A; Eggeling, Christian; Bossi, Mariano L. ; Hell, Stefan W.
During the lost decade for-field fluorescence microscopy methods have evolved that have resolution for below the wavelength of light. To outperform the limiting role of diffraction, all these methods, in one way or another, switch the ability of a molecule to emit fluorescence. Here we present a novel rhodamine amide that can be photoswitched from a nonfluorescent to a fluorescent state by absorption of one or two photons from a continuous-wave loser beam. This bright marker enables strict control of on/off switching and provides single-molecule localization precision down to 15 nm in the focal plane. Two-photon induced nonlinear photoswitching of this marker with continuous-wave illumination offers optical sectioning with simple loser equipment. Future synthesis of similar compounds holds great promise for cost-effective fluorescence nanoscopy with noninvasive optical sectioning.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.