Experimental Realization of a 12,000-Finesse Laser Cavity based on a Low-Noise Microstructured Mirror

in: Communications Physics (2023)
Dickmann, Johannes; Sauer, Steffen; Meyer, Jan; Gaedtke, Mika; Siefke, Thomas; Brückner, Uwe; Plentz, Jonathan; Kroker, Stefanie
The most precise measurement tools of humankind are equipped with ultra-stable lasers. State-of-the-art laser stabilization techniques are based on external cavities, that are limited by noise originated in the coatings of the cavity mirrors. Microstructured mirror coatings (socalled meta-mirrors) are a promising technology to overcome the limitations of coating noise and therewith pave the way towards next-generation ultra-stable lasers. We present experimental realization of a 12,000-finesse optical cavity based on one low-noise metamirror. The use of the mirrors studied here in cryogenic silicon cavities represents an order of magnitude reduction in the current limiting mirror noise, such that the stability limit due to fundamental noise can be reduced to 5 × 10−18.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.