Effect of mold shape on the microstructure of gelatin sponges for tissue engineering applications

in: Journal of the Mechanical Behavior of Biomedical Materials (2023)
El-Din Al-Mofty, Saif; El-Said Azzazy, Hassan Mohamed
Gelatin sponges have been used in several medical applications including tissue replacement, scaffolds, and hemostasis. Each application requires specific parameters that are tuned by the porosity of the sponges. Therefore, changes in the porosity profile of the sponges would change the sponge behavior. In this study, a gelatin solution was prepared and crosslinked with glutaraldehyde. Afterward, the solution was poured into three different mold structures with different volumes and frozen at a constant freezing rate. Each mold was investigated for its physical characteristics including swelling, degradation, porosity, crystallinity, and mechanical compression. Cube-molded gelatin sponges demonstrated high swelling capacity, degradation rate, and porosity while exhibiting low crystallinity, yield strength, and elasticity. These characteristics are suitable for hemostatic application and tissue regeneration. Therefore, it is recommended to freeze dry gelatin sponge in cuboid-shaped dimensions, for research or industry, to control the porosity and crystallinity of the sponge for the best result in biomedical applications.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.