Measuring coherent dynamics of a superconducting qubit in an open waveguide

in: Applied Physics Letters (2025)
Sultanov, Aidar; Mutsenik, Evgenia; Schmelz, Matthias; Kaczmarek, Leonie; Oelsner, Gregor; Hübner, Uwe; Stolz, Ronny; Ilichev, Evgeni
We measured the relaxation and decoherence rates of a superconducting transmon qubit in a resonator-free setting. In our experiments, the qubit is coupled to an open coplanar waveguide such that the transmission of microwaves through this line depends on the qubit’s state. To determine the occupation of the first excited qubit energy level, we introduced a two-pulse technique. The first applied pulse, at a frequency close to the eigenfrequency of the qubit, serves to excite the qubit. A second pulse is then used for probing the transition between the first and second excited energy levels. Utilizing this measurement technique allowed for the reconstruction of the relaxation dynamics and Rabi oscillations. Furthermore, we demonstrate the consistency between the extracted parameters and the corresponding estimations from frequency-domain measurements.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.