Single particle analysis of herpes simplex virus: Comparing the dimensions of one and the same virions via atomic force and scanning electron microscopy

in: Analytical and Bioanalytical Chemistry (2016)
Kämmer, Evelyn; Götz, Isabel; Bocklitz, Thomas W.; Stöckel, Stephan; Dellith, Andrea; Cialla-May, Dana; Weber, Karina; Zell, Roland; Dellith, Jan; Deckert, Volker; Popp, Jürgen
Currently, two types of direct methods to characterize and identify single virions are available: electron microscopy (EM) and scanning probe techniques, especially atomic force microscopy (AFM). AFM in particular provides morphologic information even of the ultrastructure of viral specimens without the need to cultivate the virus and to invasively alter the sample prior to the measurements. Thus, AFM can play a critical role as a frontline method in diagnostic virology. Interestingly, varying morphological parameters for virions of the same type can be found in the literature, depending on whether AFM or EM was employed and according to the respective experimental conditions during the AFM measurements. Here, an inter-methodological proof of principle is presented, in which the same single virions of herpes simplex virus 1 were probed by AFM previously and after they were measured by scanning electron microscopy (SEM). Sophisticated chemometric analyses then allowed a calculation of morphological parameters of the ensemble of single virions and a comparison thereof. A distinct decrease in the virions' dimensions was found during as well as after the SEM analyses and could be attributed to the sample preparation for the SEM measurements. Graphical abstract The herpes simplex virus is investigated with scanning electron and atomic force microscopy in view of varying dimensions.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.