Micronano integration of nanoscale objects for parallel biosensorics

in: SPIE Proceedings (2011)
Leiterer, Christian; Berg, Steffen; Jahr, Norbert; Brönstrup, Gerald; Christiansen, Silke; Csáki, Andrea; Fritzsche, Wolfgang
Nanoscale sensors have the potential for ultrasensitive and highly parallel bioanalytical applications. Bottom up methods like gas-phase self assembly allow for the controlled and cost-efficient preparation of numerous functional units with nanometer dimensions. Their use in sensoric instruments, however, requires the defined integration into sensoric setups such as electrode arrays. We show here how to use alternating electrical fields (dielectrophoresis DEP) in order to address this micro nano integration problem. Nanoscale units such as metal nanoparticles or semiconductor nanowires are thereby polarized and moved into the direction of higher electrical field gradients. As result, these particles bridge an electrode gap and can so be used for electrical sensoric using the electrical resistance through this structure as value correlated to the presence of molecules at the sensor surface. In order to achieve high selectivity, capture molecules (such as complementary DNA or antibodies) are used.

DOI: Array

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.