Study of microwave resonances induced by bias lines of shunted Josephson junctions

in: IEEE Transactions on Applied Superconductivity (2020)
Yilmaz, Ugur; Razmkhah, Sasan; Collot, Romain; Kunert, Jürgen; Stolz, Ronny; Febvre, Pascal
Bias lines routed over a ground plane naturally form microstrip lines associated with the presence of a capacitance. This can lead to unwanted resonances when coupled to Josephson junctions. This work presents an electrical model of a shunted Josephson junction with its bias lines and pads, fabricated with the 1 kA/cm² RSFQ niobium process of the FLUXONICS Foundry. A compact LCL T-model is used to simulate the microwave behavior of the bias line, predict resonances and design resonance-free superconducting circuits. The I-V characteristics of three shunted Josephson junctions have been obtained from time-domain simulations done with JSIM [3] and show a good match with the global behavior and experimentally observed resonance at 230 GHz, measured at 4.2 K. The influence of the position and value of a series resistor placed on bias lines is studied to damp unwanted resonances at the junction.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.