Removing interference-based effects from infrared spectra – interference fringes re-revisited

in: Analyst (2020)
Mayerhöfer, Thomas G.; Pahlow, Susanne; Popp, Jürgen; Hübner, Uwe
Substantial refractive index mismatches between substrate and layers lead to undulating baselines, which are known as interference fringes. These fringes can be attributed to multiple reflections inside the layers. For thin or plane parallel layers, these multiple reflections result in wave interference and electric field intensities which strongly depend on the location within the layer and wavenumber. In particular, the average electric field intensity is increased in spectral regions where the reflectance is reduced. Therefore, the most important precondition for the Beer-Lambert law to hold, absorption as single reason for electric field intensity changes, is no longer valid and, since absorption is proportional to the electric field intensity, considerable deviations from the Beer-Lambert law result. Fringe removal is consequently synonymous with correcting deviations from the Beer-Lambert law in the spectra. Within this contribution, we introduce an appropriate formalism based on wave optics, which allows a particularly fast and simple correction of any interference based effects. We applied our approach for correcting transmittance spectra of Poly(methyl methacrylate) layers on silicon substrates. The interference effects were successfully removed and correct baselines, in good agreement with the calculated spectra, were obtained. Due to its sound theoretical foundation, our formalism can be used as benchmark to test the performance of other methods for interference fringe removal.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.