(INVITED)Tm:YAG crystal-derived double-clad fibers – A hybrid approach towards high gain and high efficiency Tm lasers

in: Optical Materials: X (2022)
Leich, Martin; Müller, Robert; Unger, Sonja; Schwuchow, Anka; Dellith, Jan; Lorenz, Adrian; Kobelke, Jens; Jäger, Matthias
The hybrid approach of combining a Tm:YAG laser crystal with an amorphous fused silica tube is investigated to evaluate the suitability of the resulting crystal-derived fibers for efficient double-clad fiber lasers. The fabrication process and fiber properties of these Tm fibers are investigated, focusing on the dependence of the active fiber properties on the incorporated Tm3+ concentration. Crystal rods with different doping concentrations (TmxY1- x)3Al5O12 (x = 0.02, 0.05 and 0.08) were used as starting core material for fiber drawing. The investigated fibers are mechanically stable and result in a fairly homogenous and amorphous core glass with optical absorption and emission spectra that are similar to conventional Tm:Al doped silica fibers. Regarding laser properties with 790 nm cladding pumping, we could achieve a maximum slope efficiency of 47% with an output power of 4 W. The fiber laser results are compared to a conventionally fabricated double-clad Tm fiber prepared by Modified Chemical Vapor Deposition and solution doping. To the best of our knowledge, we demonstrate the highest laser output and the highest efficiency obtained from a Tm:YAG crystal-derived fiber.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.