Temperature independent refractive index measurement using a fiber Bragg grating on abrupt tapered tip

in: Optics & Laser Technology (2018)
Gomes, André D.; Silveira, Beatriz; Warren-Smith, Stephen C.; Becker, Martin; Rothhardt, Manfred; Frazão, Orlando
A fiber Bragg grating was inscribed in an abrupt fiber taper using a femtosecond laser and phase-mask interferometer. The abrupt taper transition allows to excite a broad range of guided modes with different effective refractive indices that are reflected at different wavelengths according to Bragg's law. The multimode-Bragg reflection expands over 30 nm in the telecom-C-band. This corresponds to a mode field overlap of up to 30% outside of the fiber, making the device suitable for evanescent field sensing. Refractive index and temperature measurements are performed for different reflection peaks. Temperature independent refractive index measurements are achieved by considering the difference between the wavelength shifts of two measured reflection peaks. A minimum refractive index sensitivity of 16 +/- 1 nm/RlU was obtained in a low refractive index regime (1.3475-1.3720) with low influence of temperature (-0.32 0.06 pm/degrees C). The cross sensitivity for this structure is 2.0 x 10(-5) RlU/degrees C.. The potential for simultaneous measurement of refractive index and temperature is also studied

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.