Simultaneous measurement of displacement and temperature using a balloon-like hybrid fiber sensor

in: Optics Letters (2022)
Santos, Joao P.; Bierlich, Jörg; Kobelke, Jens; Ferreira, Marta Sofia
A fiber sensor based on a silica capillary in a balloonlike shape for simultaneous measurement of displacement and temperature is proposed and experimentally demonstrated. The sensor is fabricated by splicing a segment of a hollow-core fiber between two single-mode fibers (SMF) and by creating a balloon shape with the capillary at the top-center position. The SMF–capillary–SMF configuration excites an antiresonant (AR) guidance, and the balloon shape enhances the Mach–Zehnder interferometer (MZI). Experimental results show that, for a balloon length of 4.0 cm and a capillary length of 1.2 cm, the AR is insensitive to displacement and its sensitivity to temperature is 14.3 pm/°C, while the MZI has a sensitivity to displacement of 1.68 nm/mm in the range between 0 and 5mm and a sensitivity to temperature of 28.6 pm/°C, twice the value of the AR. The proposed fiber sensor has only one sensing element in one configuration, which makes it simple to fabricate as well as low cost.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.