Revisiting the interaction of heme with hemopexin

in: Biological Chemistry (2021)
Detzel, Milena Sophie; Schmalohr, Benjamin Franz; Steinbock, Francèl; Hopp, Marie-Thérèse; Ramoji, Anuradha; Paul George, Ajay Abisheck; Neugebauer, Ute; Imhof, Diana
In hemolytic disorders, erythrocyte lysis results in massive release of hemoglobin and, subsequently, toxic heme. Hemopexin is the major protective factor against heme toxicity in human blood and currently considered for therapeutic use. It has been widely accepted that hemopexin binds heme with extraordinarily high affinity of <1 pM in a 1:1 ratio. However, several lines of evidence point to a higher stoichiometry and lower affinity than determined 50 years ago. Here we re-analyzed this data. SPR and UV/Vis spectroscopy were used to monitor the interaction of heme with the human protein. The heme-binding sites of hemopexin were characterized using hemopexin-derived peptide models and competitive displacement assays. We obtained a KD value of 0.32 ± 0.04 nM and the ratio for the interaction was determined to be 1:1 at low heme concentrations and at least 2:1 (heme:hemopexin) at high concentrations. We were able to identify two yet unknown potential heme-binding sites on hemopexin. Furthermore, molecular modelling with a newly created homology model of human hemopexin suggested a possible recruiting mechanism by which heme could consecutively bind several histidine residues on its way into the binding pocket. Our findings have direct implications for the potential administration of hemopexin in hemolytic disorders.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.