Hepatic vitamin A content investigation using coherent anti-Stokes Raman scattering (CARS) microscopy

in: ChemPhysChem (2016)
Neugebauer, Ute; Legesse, Fisseha Bekele; Heuke, Sandro; Galler, Kerstin; Schmitt, Michael; Bauer, Michael; Popp, Jürgen; Hoffmann, Patrick
Standard techniques for examining the distribution of vitamin A in liver either require staining or lead to rapid photobleaching of the molecule. A potentially better alternative approach is to use coherent anti-Stokes Raman scattering (CARS) microscopy; a fast, label-free, non-disruptive imaging method that provides contrast based on molecular vibrations. This contribution evaluates the viability of CARS microscopy for imaging vitamin A within thick hepatic tissue under physiological conditions by tuning into its characteristic vibrational band in the fingerprint region. Additional information about the morphology and architecture of the tissue was acquired using second harmonic generation (SHG) and multi-photon excited fluorescence (MPEF) to help mapping the intra-lobular positions of the vitamin A droplets. We demonstrate the capability of our multimodal imaging framework to selectively image lipid-soluble vitamin A droplets deep in bulk liver tissue with a high contrast while co-registering a complementary morphological background that clearly visualizes hepatic lobules. The results obtained envisage the good prospect of the technique for in vivo studies assessing vitamin A distribution heterogeneity and how it is affected by the progression of hepatic diseases.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.