Deep learning enables fast, gentle STED microscopy

in: Communications Biology (2023)
Ebrahimi, Vahid; Stephan, Till; Kim, Jiah; Carravilla, Pablo; Eggeling, Christian; Jakobs, Stefan; Han, Kyu Young
STED microscopy is widely used to image subcellular structures with super-resolution. Here, we report that restoring STED images with deep learning can mitigate photobleaching and photodamage by reducing the pixel dwell time by one or two orders of magnitude. Our method allows for efficient and robust restoration of noisy 2D and 3D STED images with multiple targets and facilitates long-term imaging of mitochondrial dynamics.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.