Energy transfer and formation of long-lived ³MLCT states in multimetallic complexes with extended highly conjugated bis-terpyridyl ligands

in: Physical Chemistry Chemical Physics (2016)
Wächtler, Maria; Kübel, Joachim; Barthelmes, Kevin; Winter, Andreas; Schmiedel, Alexander; Pascher, Torbjörn; Lambert, Christoph; Schubert, Ulrich S.; Dietzek, Benjamin
Multimetallic complexes with extended and highly conjugated bis-2,2’:6’,2’’-terpyridyl bridging ligands, which present building blocks for coordination polymers, are investigated with respect to their ability to act as light-harvesting antennae. The investigated species combine Ru(II)- with Os(II)- and Fe(II)-terpyridyl chromophores, the latter acting as energy sinks. Due to the extended conjugated system the ligands are able to prolong the lifetime of the 3MLCT states compared to unsubstituted terpyridyl species by delocalization and energetic stabilization of the 3MLCT states. This concept is applied for the first time to Fe(II) terpyridyl species and results in an exceptionally long lifetime of 23 ps for the Fe(II) 3MLCT state. While partial energy (480%) transfer is observed between the Ru(II) and Fe(II) centers with a time-constant of 15 ps, excitation energy is transferred completely from the Ru(II) to the Os(II) center within the first 200 fs after excitation.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.