Two-Dimensional Photosensitizer Nanosheets via Low-Energy Electron Beam Induced Cross-Linking of Self-Assembled Ru(II) Polypyridine Monolayers

in: Angewandte Chemie-International Edition (2022)
Küllmer, Maria; Herrmann-Westendorf, Felix; Endres, Patrick; Götz, Stefan; Rasouli, Hamid Reza; Najafidehaghani, Emad; Neumann, Christof; Gläßner, Rebecka; Kaiser, David; Weimann, Thomas; Winter, Andreas; Schubert, Ulrich S.; Turchanin, Andrey; Dietzek-Ivanšić, Benjamin
Artificial photosynthesis for hydrogen production is an important element in the search for green energy sources. The incorporation of photoactive units into mechanically stable 2D materials paves the way toward the realization of ultrathin membranes as mimics for leaves. Here we present and compare two concepts to introduce a photoactive RuII polypyridine complex into ≈1 nm thick carbon nanomembranes (CNMs) generated by low-energy electron irradiation induced cross-linking of aromatic self-assembled monolayers. The photoactive units are either directly incorporated into the CNM scaffold or covalently grafted to its surface. We characterizeRuIICNMsusingX-rayphoto-electron, surface-enhanced Raman, photothermal deflection spectroscopy, atomic force, scanning electron microscopy, and study their photoactivity in graphene field-effect devices. There with, we explore the applicability of low-energy electron irradiation of metal complexes for photosensitizer nanosheet formation.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.