Studying Molecular Rearrangement of P1 Dye at a Passivating Alumina Surface Using Vibrational Sum-Frequency Generation Spectroscopy: Effect of Atomic-Level Roughness

in: ChemPhysChem (2023)
De, Ratnadip; Bera, Anupam; Schmidt, Heiner; Neumann, Christof; Paa, Wolfgang; Gawlik, Annett; Turchanin, Andrey; Dietzek-Ivanšić, Benjamin
The effect of roughness and thickness of alumina layers, mimicking the passivation layer commonly used in dyesensitized photoelectrodes, on the molecular adsorption of P1 dye, 4-(bi(4-(2,2-dicyano-vinyl)-thiophene-2-yl]-phenyl]-aminobenzoic acid) has been studied using surface-sensitive vibrational sum frequency generation(VSFG) spectroscopy. The VSFG spectra reveal the formation of poorly ordered dye layers on relatively rough surfaces where XPS measures a higher dye loading. Furthermore, these poorly ordered dye molecules are responsible for the generation of trapped electronic states as probed by successive photoluminescence (PL) measurements. Surface sensitive VSFG spectroscopy in combination with XPS and PL measurements provide complementary spectral information on ordering of the adsorbed dyes, their density on the surface and electronic states of the adsorbed monolayer which are prerequisite for improving our understanding of molecularly functionalized photoelectrodes and their further development.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.