Bei Krebs-Operationen schafft erst eine nachträgliche Untersuchung von Gewebebiopsien und Zellmaterial Sicherheit, ob Tumorzellen übersehen worden sind. Ein interdisziplinäres Forscherteam um Professor Jürgen Popp vom Leibniz-Institut für Photonische Technologien (Leibniz-IPHT) hat nun einen optischen Ansatz vorgelegt, der mit seiner Verlässlichkeit und Schnelligkeit die operationsbegleitende Schnellschnittdiagnostik revolutionieren könnte. Dafür wurde das Jenaer Wissenschaftlerteam als einer von zwei Finalisten für den renommierten Kaiser-Friedrich-Forschungspreis 2018 nominiert.  

Im Rahmen des Projektes „CDIS Jena — Cancer Diagnostik Imaging Solution Jena“ gelingt es den Wissenschaftlerinnen und Wissenschaftlern, die molekulare Struktur des Gewebes optisch sichtbar zu machen und in weniger als 20 Minuten zuverlässig in auswertbare Bilder zu übersetzen. So lässt sich noch während der Operation krebsartiges Gewebe sicher erkennen.

Effektive Diagnostik mit Software und Laser-Mikroskop für eine passgenaue Therapie

Das Jenaer Forscherteam des Leibniz-IPHT, der Institute für Physikalische Chemie sowie für Angewandte Physik der Friedrich-Schiller-Universität, des Fraunhofer-Instituts für Angewandte Optik und Feinmechanik und der Klinik für Hals-, Nasen- und Ohrenheilkunde des Universitätsklinikums setzt auf einen integrierten Ansatz. Er erzeugt räumlich hoch aufgelöste Bilder mithilfe von drei unterschiedlichen optisch-spektroskopischen Techniken. Es ergibt sich ein Multikontrast-Bild, auf dem Aspekte des Gewebes sichtbar werden, ohne dass dieses angefärbt werden muss. Damit Mediziner die Bilder bei einer Schnellschnittdiagnostik gleich objektiv und automatisiert auswerten können, haben die Forscherinnen und Forscher eine Software entwickelt. Diese erkennt Muster in Gewebestruktur und -morphologie sowie molekulare Details und erleichtert dem Operationsteam so die Entscheidungsfindung. 

Während die Standard-Schnellschnitt-Analyse nur mit hohem Arbeitsaufwand von erfahrenen Pathologen durchgeführt werden kann und immer noch nachträglich abgesichert werden muss, ist die automatisierte multimodale Gewebe-Analyse schneller und verlässlicher. Nach knapp jeder 10. Operation von Tumoren im Kopf-Hals-Bereich werden derzeit nachträglich noch Krebszellen aufgefunden. Der im Leibniz-IPHT erforschte Multikontrast-Mikroskopie-Ansatz hingegen liefert in weniger als 20 Minuten noch während der Operation die Information, ob der Schnittrand frei von Tumorgewebe ist oder nicht. Dies trägt entscheidend dazu bei, die Heilungschancen der Patientinnen und Patienten zu verbessern. Eine erneute Operation und eine sich gegebenenfalls anschließende Therapie stellt für diese oft eine erhebliche Belastung dar. Indem sie diese Folgeschritte zu vermeiden hilft, lassen sich durch die verlässliche Beurteilung der Tumorränder dem deutschen Gesundheitssystem Kosten in Millionenhöhe einsparen. 

Nachdem das Jenaer Forscherteam die Leistungsfähigkeit seines Bildgebungsansatzes in Tests an einer kleinen Patientenzahl überzeugend demonstriert hat, überführte es die Ergebnisse in ein tragbares Mikroskop mit einem neuartigen kompakten Faserlaser für den Einsatz in klinischer Umgebung. Dieses Mikroskop soll nun bei operationsbegleitenden Schnellschnitt-Untersuchungen an einer großen Gruppe von Patienten in einer präklinischen Validierungsstudie zum Einsatz kommen. 

Das Forschungsprojekt „CDIS Jena — Cancer Diagnostik Imaging Solution Jena: Die Revolution in der intraoperativen Schnellschnittdiagnostik“ wird gefördert vom Bundesministerium für Bildung und Forschung (BMBF), von der Deutschen Forschungsgemeinschaft (DFG) und dem Thüringer Ministerium für Wirtschaft, Wissenschaft und Digitale Gesellschaft (TMWWDG).

Mit dem Kaiser-Friedrich-Forschungspreis unterstützt die Firma Stöbich Brandschutz Forschungsergebnisse mit einem hohen Innovationspotential für Entwicklungen der Optischen Technologien. Die Preisverleihung findet am 18. Oktober 2018 in Goslar statt. Veranstalter ist das Netzwerk PhotonicNet mit 50 Partnern aus Industrie, Forschung und Bildung.

Multikontrast-Bild eines Dünnschnitts von mit Hautkrebs befallenem Gewebe. Mithilfe von drei optisch-spektroskopischen Techniken werden morphologische und molekulare Aspekte sichtbar. Bild: Leibniz-IPHT

Multikontrast-Bild eines Dünnschnitts von mit Hautkrebs befallenem Gewebe. Mithilfe von drei optisch-spektroskopischen Techniken werden morphologische und molekulare Aspekte sichtbar. Bild: Leibniz-IPHT