Evaluation of light trapping structures for liquid-phase crystallized silicon on glass (LPCSG)

in: Physica Status Solidi A-Applications and Materials Science (2017)
Vetter, Michael; Jia, Guobin; Sanei, Azade; Gawlik, Annett; Plentz, Jonathan; Andrä, Gudrun
Liquid-phase crystallized silicon on glass (LPCSG) presents a promising material to fabricate high quality silicon thin films, e.g. for solar cells and modules. Using continuous wave line focus laser irradiation at 808 nm, about 10 um thick microcrystalline silicon layers are fabricated by liquid-phase crystallization of amorphous or nanocrystalline silicon layers deposited by electron beam evaporation on Borofloat 33 glass. To achieve high solar cell efficiencies with such thin silicon layers effective light trapping structures at the silicon surface are needed to enhance the light absorption and thereby the current in the solar cell. At the same time, these surface structures must provide low surface recombination velocity to maintain high open circuit voltage (Voc). Light trapping structures in LPCSG absorber prepared by conventional KOH texturing and by nanowire structuring of the solar cell backside are investigated. The impact of structures on short circuit current density (Isc) is determined from optical measurements. As a new approach effective carrier lifetime is measured in LPCSG absorbers using the quasi steady-state photoconductance method to determine the impact of structuring on surface recombination and implied Voc of solar cell precursors. Carrier lifetimes in the range of 300- 400 ns are measured indicating a carrier diffusion length of more than 20 um which is 2-3 times larger than the layer thickness. It is found that a slight pyramidal surface texture by KOH solution provides a high level of light trapping increasing Isc by 17-18% and maintaining high Voc (> 600 mV). Potential of current enhancement of nanowire structuring is higher (approx. 20%), but further optimization of nanowire dimensions and of surface cleaning of nanowire structures is needed to overcome higher surface recombination and resulting Voc losses.

Cookies & Skripte von Drittanbietern

Diese Website verwendet Cookies. Für eine optimale Performance, eine reibungslose Verwendung sozialer Medien und aus Werbezwecken empfiehlt es sich, der Verwendung von Cookies & Skripten durch Drittanbieter zuzustimmen. Dafür werden möglicherweise Informationen zu Ihrer Verwendung der Website von Drittanbietern für soziale Medien, Werbung und Analysen weitergegeben.
Weitere Informationen finden Sie unter Datenschutz und im Impressum.
Welchen Cookies & Skripten und der damit verbundenen Verarbeitung Ihrer persönlichen Daten stimmen Sie zu?

Sie können Ihre Einstellungen jederzeit unter Datenschutz ändern.