- Startseite
- Nachwuchsgruppen
- Ultrakurzpuls-Faserlaser
- Publikationen
- Gain-controlled broadband tuneability in self-mode-locked Thulium-doped fibre laser
Gain-controlled broadband tuneability in self-mode-locked Thulium-doped fibre laser
in: Communications Physics (2022)
Ensuring self-driven mode-locking and broadband wavelength tuneability in all-fibreintegrated femtosecond laser sources enables a new level of their versatility and extends areas of their applications. Principle limitations for this are traditionally available ultrafast modulators and tuneability techniques. Here, we exploit Thulium-doped fibre to perform three roles in the cavity: laser gain, saturable absorber, and tuneability element via controlling its excitation level. We confirmed that Tm-doped fibre saturable absorption is defined by a reinforced quenching of Tm3+ pairs. As a result, we present both numerically and experimentally a highly stable sub-picosecond pulse generation with a ~90 nm tuneability range spanning from 1873 to 1962 nm via adjusting the cavity feedback. The maximum laser efficiency corresponds to 25% cavity feedback, enabling the highest output energy of 1 nJ in 600-fs solitons at 1877 nm. Overall, the presented laser system establishes a compact and straightforward approach for ultrafast generation, which can be translated to other fibre laser operation wavelengths.