- Startseite
- Forschungsabteilungen
- Quantensysteme
- Publikationen
- Wafer-Scale Al Junction Technology for Superconducting Quantum Circuits
Wafer-Scale Al Junction Technology for Superconducting Quantum Circuits
in: IEEE Transactions on Applied Superconductivity (2024)
Josephson tunnel junctions represent a key element in superconducting electronics and quantum circuits. For many years, shadow evaporation by means of Dolan-type bridges has been the state-of-the-art for deep sub- micrometer sized structures. Increasing demand in the number of Josephson junctions, e.g., in qubit circuits and travelling wave parametric amplifiers, requests for a wafer-scale fabrication process with precise control of junction parameters and have led to an advanced lift-off technique called Manhattan-type junction technology in recent years. Herein, we report on the development of a 100 mm wafer-scale fabrication technology for deep sub-micrometer sized Al Josephson junctions with linear dimensions down to 180 nm. The critical current IC of the junctions ranges from about 10 to 120 nA scaling with their linear dimensions. Low temperature transport measurements as well as room-temperature characterization has been used for IC and process homogeneity determination of series arrays of up to 50 Josephson junctions. We discuss technology parameters such as yield, on-chip and on-wafer reproducibility of the junction’s critical currents as well as main process limitations. Moreover, we present experimental results on the characterization of first transmon-type qubits fabricated using this technology.