Logo Leibniz IPHT

On-Chip spectroscopic assessment of microbial susceptibility to antibiotics within 3 hours

Schröder, Ulrich-Christian; Kirchhoff, Johanna; Hübner, Uwe; Mayer, Günter; Glaser, Uwe; Henkel, Thomas; Pfister, Wolfgang; Fritzsche, Wolfgang; Popp, Jürgen; Neugebauer, Ute
in: Journal of Biophotonics (2017) 1547

In times of rising antibiotic resistances, there is a high need for fast, sensitive and specific methods to determine antibiotic susceptibilities of bacterial pathogens. Here, we present an integrated microfluidic device in which bacteria from diluted suspensions are captured in well-defined regions using on-chip dielectrophoresis and further analyzed in a label-free and non-destructive manner using Raman spectroscopy. Minimal sample preparation and automated sample processing ensure safe handling of infectious material with minimal hands-on time for the operator. Clinical applicability of the presented device is demonstrated by antibiotic susceptibility testing of Escherichia coli towards the commonly prescribed second generation fluoroquinolone ciprofloxacin. Ciprofloxacin resistant E. coli were differentiated from sensitive E. coli with high accuracy within less than three hours total analysis time paving the way for future point-of-care devices. Spectral changes leading to the discrimination between sensitive and resistant bacteria are in excellent agreement with expected metabolic changes in the bacteria due to the mode of action of the drug. The robustness of the method was confirmed with experiments involving different devices with different designs, both electrode as well as microfluidics design, and material. Furthermore, general applicability was demonstrated with different operators over an extended time period of half a year.

Logo Leibniz-Gemeinschaft


Annual report

Anniversary Brochure