Advanced FLUXONICS process CJ2 based on sub-μm cross-type Nb/AlOx/Nb Josephson junctions for mixed signal circuits

in: IEEE Transactions on Applied Superconductivity (2024)
Kunert, Jürgen; Schmelz, Matthias; Peiselt, Katja; Oelsner, Gregor; Reddy, Soundarya Gopala; Ortlepp, Thomas; Stolz, Ronny
Quantum computers represent a prominent example of technology harnessing quantum phenomena for practical applications. Implementations based on superconducting solidstate qubits play a leading role. These have facilitated the implementation of the first commercially viable quantum computers through the use of well-established and scalable fabrication technologies. As the number of qubits in these systems is continuously increasing, there is an urgent need to advance wiring and integration methods. Specifically, the demand for highfrequency control and readout lines within the millikelvin coolers introduces unwanted heat loads. As scalable alternative, superconducting digital electronics has been proposed as a promising candidate for direct interfacing with superconducting quantum circuits. We, therefore, advanced our well-established cross-type, submicron Nb-based Josephson junction technology for analogue circuits to allow for the implementation of digital circuits. Thus, an advanced mixed signal process CJ2 hosts both, analogue and digital circuits, on a single chip, using Josephson junctions of a wide critical current range. We discuss the technology and the realization of first circuits as well as results of basic logic gate and dc-SQUID operations. This advanced technology CJ2 enables the development of digital interfaces for quantum circuits by academic and industrial partners in the framework of the European FLUXONICS foundry.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.