A Heterodox Approach for Designing Iron Photosensitizers: Pentacyanoferrate(II) Complexes with Monodentate Bipyridinium/Pyrazinium-Based Acceptor Ligands

in: Inorganic Chemistry (2025)
Schmidt, Heiner; Oglou, Ramadan C.; Tuncer, Hüseyin O.; Ulusoy Ghobadi, Turkan Gamze; Tekir, Safak; Sertcelik, Kubra N. O.; Ibrahim, Abdelrahman; Döhler, Lotta; Özcubukcu, Salih; Dietzek-Ivanšić, Benjamin; Karadaş, Ferdi
The main obstacle in replacing well-established precious ruthenium photosensitizers with earth-abundant iron analogs is the short excited state lifetimes of metal-to-ligand charge transfer (MLCT) states due to relatively weak octahedral field splitting and relaxation via metal-centered (MC) states. In this study, we address the issue of short lifetime by using pentacyanoferrate(II) complexes and combat facile photodissociation by utilizing positively charged pyrazinium or bipyridinium ligands. We utilize femtosecond transient absorption spectroscopy alongside quantum chemical calculations to probe the excited states of three 4,4′-bipyridinium- or pyrazinium-based pentacyanoferrate(II) complexes. The 4,4′-bipyridinium-based complexes exhibit 3 MLCT lifetimes of about 20 ps, while the pyrazinium-based complex exhibits a lifetime of 61 ps in an aqueous solution, setting a benchmark for cyanoferrate complexes. These results mark the foundation for a new group of easy-to-prepare iron photosensitizers that can be used for harvesting visible light.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.