A Different, Nondestructive Method of Investigating In Situ Degradation in Hybrid Perovskite Solar Cells

in: International Journal of Energy Research (2024)
Ugokwe, Chikezie; Gebremichael, Zekarias Teklu; Ogunmoye, Kehinde; Onwuzuroha, Chibuike; Diegel, Marco; Schubert, Ulrich S.; Hoppe, Harald
One of the most significant impediments to the upscaling of hybrid organic-inorganic perovskite (HOIP) solar cells is poor stability. So, to effectively establish precautionary strategies, it is necessary to have a comprehensive grasp of the mechanisms that contribute to their degradation. Conventional characterization techniques used for in situ degradation assessment of perovskite solar cells either track just universal parameters, which yields poor insights about localized degradation processes, or the technique itself induces degradation, which may confound results. Developed in this study is a nondestructive technique of analyzing in situ active layer degradation in HOIP solar cells’ active layer utilizing a combination of optical modelling and ageing device’s reflectance tracking. The optical dielectric functions of the solar cell’s functional layers were modelled using the layers’ transmitted and reflected light spectra. The transfer matrix approach was used to fit the reflectance spectrum of entire solar cell layer stacks utilizing the computed dielectric functions for individual materials and accounting for the possibility of lead iodide gradient layer formation in the model. Leveraging no other characterization method, the presence of a lead iodide gradient layer was identified within the solar cell layer stack, an unmistakable indicator of methyl ammonium lead iodide perovskite (MAPI) degradation, probing with only photons.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.