UV cross-linking of unmodified DNA on glass surfaces

in: Analytical and Bioanalytical Chemistry (2009)
Schüler, Thomas; Nykytenko, Alla; Csáki, Andrea; Möller, Robert; Fritzsche, Wolfgang; Popp, Jürgen
The performance of DNA microarrays strongly depends on their surface properties. Furthermore, the immobilization method of the capture molecules is of importance for the efficiency of the microarray in terms of sensitivity and specificity. This work describes the immobilization of single-stranded capture oligonucleotides by UV cross-linking on silanated (amino and epoxy) glass surfaces. Thereby we used amino (NH2) and poly thymine/poly cytosine modifications of the capture sequences as well as unmodified capture molecules. The results were compared to UV cross-linking of the same DNA oligonucleotides on unmodified glass surfaces. Immobilization and hybridization efficiency was demonstrated by fluorescence and enzyme-induced deposition of silver nanoparticles. We found out that single-stranded DNA molecules do not require a special modification to immobilize them by UV cross-linking on epoxy- or amino-modified glass surfaces. However, higher binding rates can be achieved when using amino-modified oligonucleotides on an epoxy surface. The limit of detection for the used settings was 5 pM.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.