Photon counting of extreme ultraviolet high harmonics using a superconducting nanowire single‑photon detector

in: Applied Physics B-Lasers and Optics (2022)
Fuchs, Silvio; Abel, Johann J.; Nathanael, Jan; Reinhard, Julius; Wiesner, Felix; Wünsche, Martin; Skruszewicz, Slawomir J.; Rödel, Christian; Born, Detlef; Schmidt, Heidemarie; Paulus, Gerhard G.
Laser-driven light sources in the extreme ultraviolet range (EUV) enable nanoscopic imaging with unique label-free elemental contrast. However, to fully exploit the unique properties of these new sources, novel detection schemes need to be developed. Here, we show in a proof-of-concept experiment that superconducting nanowire single-photon detectors (SNSPD) can be utilized to enable photon counting of a laser-driven EUV source based on high harmonic generation (HHG). These detectors are dark-count free and accommodate very high count rates—a perfect match for high repetition rate HHG sources. In addition to the advantages of SNSPDs for classical imaging applications with laser-driven EUV sources, the ability to count single photons paves the way for very promising applications in quantum optics and quantum imaging with high energetic radiation like, e.g., quantum ghost imaging with nanoscale resolution.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.