Optical properties of core-shell nanoparticles and their application for effective absorption, scattering, extinction and filtering solar and optical radiation

in: Photonics and Nanostructures-Fundamentals and Applications (2024)
Pustovalov, Victor K.; Astafyeva, Liudmila G.; Fritzsche, Wolfgang
The review presents a comprehensive analysis of the latest experimental and theoretical results and achievements related to the optical properties of core-shell nanoparticles (nanoshells) and nanostructured materials containing them for solar and optical radiation applications. Modern nanotechnologies allow producing a variety of coreshell nanoparticles from various metals and materials, with different sizes, shapes and combinations of materials, possessing unique optical properties when immersed in liquid, solid or gaseous media. Among them, it is worth noting nanoparticles with the core-shell structure SiO2-Au, Au-SiO2, Au-Ag, Ti-TiO2, Ni-NiO, NiO-Ni, Cu2O-Au, Fe3O4-Au and others, the properties and areas of applications of which were analyzed. The results of studying the optical properties of various core-shell nanoparticles in a wide range of wavelengths and their parameters are presented and analyzed. The use of nanoparticles selected on the basis of the presented analysis of absorption, scattering and attenuation of optical and solar radiation can be used to develop and implement various devices that provide unique advantages over traditional devices in the control and use of optical radiation. These results can be used to design and apply optical absorbers, scatterers, filters, attenuators and other devices based on them to control and modify radiation properties, especially for high-temperature nanophotonics applications. They can play a decisive role in improving the efficiency of solar and optical energy applications. This review focuses on recent research and achievements, mainly for the years 2020–2024, but also takes into account background papers from previous years.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.