Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer

in: Optics and Lasers in Engineering (2009)
Schröder, Kerstin; Ecke, Wolfgang; Willsch, Reinhardt
Fiber Bragg grating (FBG) sensors in single-mode optical fibers are widely applied for measurement of temperature and strain. If exposing FBG sensors to an external analyte by planar side-polishing technique of the fiber, evanescent-field interaction yields a Bragg wavelength shift also by changing the refractive index of the analyte. Deposition of sensor-specific transducer layers on the side-polished fiber can specify this spectrally encoding and network-capable optochemical fiber Bragg grating refracto- metry to the monitoring of specific substances, absorbed gases and vapors. In this paper, the sensor principle is demonstrated for the example of a hydrogen gas sensor based on a palladium thin-film transducer. Hydrogen in 0.1–4% volume concentration range can be monitored by the spectral shift of the Bragg wavelength, which is caused by the decreasing complex refractive index of Pd with increasing absorption of hydrogen.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.