Motion artefact detection in structured illumination microscopy for live cell imaging

in: Optics Express (2016)
Förster, Ronny; Müller, Walter; Jost, Aurélie; Heintzmann, Rainer; Wicker, Kai
The reconstruction process of structured illumination microscopy (SIM) creates substantial artefacts if the specimen has moved during the acquisition. This reduces the applicability of SIM for live cell imaging, because these artefacts cannot always be recognized as such in the final image. A movement is not necessarily visible in the raw data, due to the varying excitation patterns and the photon noise. We present a method to detect motion by extracting and comparing two independent 3D wide-field images out of the standard SIM raw data without needing additional images. Their difference reveals moving objects overlaid with noise, which are distinguished by a probability theory-based analysis. Our algorithm tags motion-artefacts in the final high-resolution image for the first time, preventing the end-user from misinterpreting the data. We show and explain different types of artefacts and demonstrate our algorithm on a living cell.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.