Influence of nanobody binding on fluorescence emission, mobility and organization of GFP-tagged proteins

in: BioRxiv (2020)
Schneider, Falk; Eggeling, Christian; Sezgin, Erdinc
Advanced fluorescence microscopy studies require specific and monovalent molecular labelling with bright and photostable fluorophores. This necessity led to the widespread use of fluorescently labelled nanobodies against commonly employed fluorescent proteins. However, very little is known how these nanobodies influence their target molecules. Here, we observed clear changes of the fluorescence properties, mobility and organisation of green fluorescent protein (GFP) tagged proteins after labelling with an anti-GFP nanobody. Intriguingly, we did not observe any co-diffusion of fluorescently-labelled nanobodies with the GFP-labelled proteins. Our results suggest significant binding of the nanobodies to a non-emissive, oligomerized form of the fluorescent proteins, promoting disassembly into more monomeric forms after binding. Our findings show that great care must be taken when using nanobodies for studying dynamic and quantitative protein organisation.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.