Understanding Stochastic Behavior of SelfRectifying Memristors for Error-Corrected Physical Unclonable Functions

in: IEEE Transactions on Nanotechnology (2024)
Zhao, Xianyue; Ruchti, Jonas; Frisch, Christoph; Li, Kefeng; Chen, Ziang; Menzel, Stephan; Waser, Rainer; Schmidt, Heidemarie; Polian, Ilia; Pehl, Michael; Du, Nan
Physical Unclonable Functions (PUFs) have gained widespread attention for their secure key storage, authentication, and anti-counterfeiting applications. While traditional PUFs based on Complementary Metal-Oxide-Semiconductor (CMOS) have been extensively studied, the emergence of memristors offers new opportunities due to their inherent device variations and distinctive resistive switching behaviors. This study explores the construction of reliable PUFs using self-rectifying analog BiFeO3 (BFO) memristors. We assess the raw bit error rate (rBER) of the BFO-based PUF under varying voltage challenges and classify the switching behavior into stochastic, transition, and deterministic regions. As the primary objective of this study, we identify the sources of stochastic behavior in the three distinct regions while investigating the physical switching mechanism in BFO cells. Additionally, we propose a key storage method based on memristor variability, including an error correction scheme to enhance the reliability of PUF. This research contributes to a comprehensive understanding of PUF reliability and the underlying sources of intrinsic stochastic behavior in memristive technology.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.