Investigating Light-Driven Hole Injection and Hydrogen Evolution Catalysis at Dye-Sensitized NiO Photocathodes

in: Journal of Physical Chemistry C (2019)
Bräutigam, Maximilian; Wächtler, Maria; Munoz-Garcia, Ana B.; Pavone, Michele; Dietzek, Benjamin; Chavarot-Kerlidou, Murielle; Artero, Vincent; Bold, Sebastian; Massin, Julien
Dye-sensitized photoelectrochemical cells form an emerging technology for the large-scale storage of solar energy in the form of (solar) fuels because of the low cost and easy processing of their constitutive photoelectrode materials. Such hybrid photoelectrodes consist of molecular dyes grafted onto transparent semiconducting metal oxides in combination with catalytic centers. The optimization of the performances of such hybrid photoelectrodes requires a detailed understanding of the light-driven electron transfer processes occurring first at the interface between the semiconducting material and the dye and then between the dye and the catalytic center. Here we address the first of these issues and use quantum chemistry to determine the structural and electronic features of the interfaces between a push−pull dye and the p-NiO (100) surface. We show that these calculations are in good agreement with transient absorption spectroscopic measurements on a prototypical dye-sensitized photocathode system able to evolve hydrogen in the presence of a cobaloxime catalyst in solution.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.