Excitation Energy Dependent Branching Dynamics Determines Photostability of Iron (II) – Mesoionic Carbene Complexes

in: Inorganic Chemistry (2021)
Nair, Shruthi Santhosh; Bysewski, Oliver; Kupfer, Stephan; Winter, Andreas; Wächtler, Maria; Schubert, Ulrich S.; Dietzek, Benjamin
Photoactive metal complexes containing earthabundant transition metals recently gained interest as photosensitizers in light-driven chemistry. In contrast to the traditionally employed ruthenium or iridium complexes, iron complexes developed to be promising candidates despite the fact that using iron complexes as photosensitizers poses an inherent challenge associated with the low-lying metal-centered states, which are responsible for ultrafast deactivation of the charge-transfer states. Nonetheless, recent developments of strongly ó-donating carbine ligands yielded highly promising systems, in which destabilized metal-centered states resulted in prolonged lifetimes of chargetransfer excited states. In this context, we introduce a series of novel homoleptic Fe−triazolylidene mesoionic carbene complexes. The excited-state properties of the complexes were investigated by time-resolved femtosecond transient absorption spectroscopy and quantum chemical calculations. Pump wavelength-dependent transient absorption reveals the presence of distinct excited-state relaxation pathways. We relate the excitation-wavelength-dependent branching of the excited-state dynamics into various reaction channels to solvent-dependent photodissociation following the population of dissociative metal centered states upon excitation at 400 nm.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.