Guided-deconvolution for correlative light and electron microscopy

in: PLoS One (2023)
Ma, Fengjiao; Sedzicki, Jaroslaw; Kaufmann, Rainer; Cseresnyes, Zoltan; Dehio , Christoph; Hoeppener, Stephanie; Figge, Marc Thilo; Heintzmann, Rainer
Correlative light and electron microscopy is a powerful tool to study the internal structure of cells. It combines the mutual benefit of correlating light (LM) and electron (EM) microscopy information. The EM images only contain contrast information. Therefore, some of the detailed structures cannot be specified from these images alone, especially when different cell organelle are contacted. However, the classical approach of overlaying LM onto EM images to assign functional to structural information is hampered by the large discrepancy in structural detail visible in the LM images. This paper aims at investigating an optimized approach which we call EM-guided deconvolution. This applies to living cells structures before fixation as well as previously fixed sample. It attempts to automatically assign fluorescence-labeled structures to structural details visible in the EM image to bridge the gaps in both resolution and specificity between the two imaging modes. We tested our approach on simulations, correlative data of multi-color beads and previously published data of biological samples.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.