Wide-Bandgap Double Perovskites with Multiple Longitudinal-Optical Phonon Scattering

in: Advanced Functional Materials (2022)
Wang, Liangling; Zheng, Wei; Vitale, Francesco; Zhang, Xiangzhou; Li, Xiuling; Ji, Yanchen; Liu, Zhen; Ghaebi, Omid; Plass, Christian T.; Domes, Robert; Frosch, Torsten; Soavi, Giancarlo; Wendler, Elke; Zhang, Yuhai; Ronning, Carsten
Alloyed lead-free double perovskites display intense photoluminescence, are environmentally friendly, and their devices show long-term operation. Thanks to these properties, which make them excellent warm white-emitting materials, they have recently received great attention in lighting applications. An important factor to tune the optical properties of alloyed lead-free double perovskites is the presence of self-trapped excitons. Here, it is demonstrated that in leadfree double perovskites, the strong electron–phonon coupling plays a crucial role in the generation of self-trapped excitons. The strong electron–phonon coupling is confirmed by a large Huang–Rhys factor and by the presence of multiphonon transitions. In particular, sharp emission lines superimposed on the broad photoluminescence emission band of one of these samples (Cs2Ag0.6Na0.4InCl6 0.5%Bi) are observed; these are due to the strong coupling of longitudinal-optical phonons with excited electronic states caused by the tetragonally distorted AgCl6 octahedrons. Such a strong coupling of longitudinal-optical phonons to electrons can effectively modulate the photophysical properties of alloyed double perovskites, and its understanding is, thus, of paramount importance for the design of future optoelectronic devices.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.