Fiber-optic Bragg gratings as magnetic field-insensitive strain sensors for the surveillance of cryogenic devices

in: Cryogenics (2009)
Latka, Ines; Ecke, Wolfgang; Höfer, Bernd; Habisreuther, Tobias; Willsch, Reinhardt
While conventional electrical resistance strain gages show increasing cross-sensitivities to temperature and magnetic field with decreasing temperature down to liquid helium, it has been found that fiber-optic Bragg grating strain sensors show negligible thermo-optic and magneto-optic effects in cryogenic environments; therefore, they allow reliable strain measurements. These specific application advantages of optical fiber Bragg grating sensors at low temperatures, together with the electrical isolation and low electro-magnetic interference, low thermal conductivity and their multiplexing capability, make them 27attractive for structural health monitoring in cryogenic devices such as superconductive magnets. In this paper we present low temperature characteristics of fiber Bragg grating-based sensors and address application-based side effects such as induced birefringence

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.