Bio-inspired self-assembly of large area 3D Ag@SiO2 plasmonic nanostructures with tunable broadband light harvesting

in: Applied Materials Today (2021)
Cheng, Pengfei; Ziegler, Mario; Ripka, Valentin; Wang, Dong; Wang, Hongguang; van Aken, Peter A.; Schaaf, Peter
Tremendous efforts have been made to fabricate large-scale plasmonic nanostructures, which show wide applications in surface plasmon resonance (SPR) sensing, catalytic conversion, photothermal conversion, optoelectronics, photothermal therapy. However, unable to fabricate over 5 cm2 plasmonic nanostructures with good controllability hinders their further applications. Here, super large-scale (153 cm2) 3D Ag@SiO2 hybrid plasmonic nanostructures with adjustable and ultra-broadband light absorption are fabricated by a simple and controllable two-step approach. The metastable atomic layer deposition (MS-ALD) is combined with physical vapor deposition (PVD) to generate these structures in a self-assembly manner. The structures look like coral tentacles. These excellent properties are attributed to multiple forward scatterings and extinction effects produced by Ag@SiO2 nanostructures. Using 3D Ag@SiO2 plasmonic nanostructures as light absorber for bottom-heating-based evaporation, the water evaporation rate remarkably improves seven times under 1 Sun than that in dark condition. Our results pave the avenue for developing super large-scale Ag-based plasmonic nanostructure with potential applications in solar energy conversion.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.