Optimization of the Bulk Refractive Index Sensitivity of Silver NanoPrisms

in: Advanced Optical Materials (2024)
Szanto, Geza; Pritzke, Pia; Kluitmann, Jonas Jakobus ; Köhler, Johann Michael; Csáki, Andrea; Fritzsche, Wolfgang; Csarnovics, Istvan; Bonyar ´, Attila
The sensitivity and optical properties of silver nanoprisms (triangular plates with round-truncated corners) are investigated in this paper. Results of boundary element method simulations are compared with experimental results and literature data. Based on electron microscopy images of the synthesized nanoprisms, a single-particle model is set up for simulations with three running parameters: edge length, thickness, and roundness (defined as the radius of the circumscribed circle divided by the edge length). These geometric parameters can be optimized during chemical synthesis to create sensors with improved sensitivity. The effect of biomolecular layers is also investigated. As a novel approach to improve the agreement between the simulated and experimentally measured extinction spectra, the single-particle model is extended to consider the variation of the prisms’ parameters in the form of distributions. The resulting extinction cross-section spectra correspond well with the experimental data. The calculated bulk refractive index sensitivity is 670 nm/RIU (RIU stands for refractive index unit) for the single particle model (length = 150 nm, thickness = 10 nm, and roundness = 0.1), while (690 ± 5) nm/RIU for the extended model. The presented model and obtained relations between sensitivity and geometry can be effectively used to design and optimize the fabrication technologies for silver nanoprism-based sensing applications.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.