Localized surface plasmon resonance (LSPR) based biosensing

in: Expert Review of Molecular Diagnostics (2018)
Csáki, Andrea; Stranik, Ondrej; Fritzsche, Wolfgang
INTRODUCTION: Bioanalytical sensing based on the principle of localized surface plasmon resonance experiences is currently an extremely rapid development. Novel sensors with new kinds of plasmonic transducers and innovative concepts for the signal development as well as read-out principles were identified. This review will give an overview of the development of this field. Areas covered: The focus is primarily on types of transducers by preparation or dimension, factors for optimal sensing concepts and the critical view of the usability of these devices as innovative sensors for bioanalytical applications. Expert Commentary: Plasmonic sensor devices offer a high potential for future biosensing given that limiting factors such as long-time stability of the transducers, the required high sensitivity and the cost-efficient production are addressed. For higher sensitivity, the design of the sensor in shape and material has to be combined with optimal enhancement strategies. Plasmonic nanoparticles from bottom-up synthesis with a post-synthetic processing show a high potential for cost-efficient sensor production. Regarding the measurement principle, LSPRi offers a large potential for multiplex sensors and can provide a high-throughput as well as highly paralleled sensing. The main trends are expected towards optimal LSPR concepts which represent cost-efficient

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.