Vibrational spectroscopic characterization of arylisoquinolines by means of Raman spectroscopy and density functional theory calculations

in: Physical Chemistry Chemical Physics (2017)
Domes, Robert; Domes, Christian; Albert, Christian R.; Bringmann, Gerhard; Popp, Jürgen; Frosch, Torsten
Promising new antimalarial agents were investigated using FT-NIR and deep-UV resonance Raman spectroscopy. The Raman spectra of the seven arylisoquinolines (AIQ) were calculated with the help of density functional theory (DFT). Very good agreement with the experimental data was achieved and a convincing mode assignment was performed with the help of the calculated potential energy distribution (PED). For the non-resonant Raman spectra the most prominent bands were assigned to n(CQC)stretching modes of the isoquinoline system. To differentiate between substances with similar structures ,deep-UV resonance Raman spectra were recorded. Raman bands in the range between 1250 and1210 cm_1 were assigned to n(CQC) stretching vibrations in combination with d(HCC) deformation vibrations of the aryl rests. These vibrations of the aryl part of the molecules were selectively enhanced, which, thus, enabled the differentiation of similar active agents from each other. For lexc = 257 nm excitation, strong n(CQC) vibrations of the isoquinoline (benzo-) part dominate the Raman spectrum in the range between 1685 and 1585 cm_1 and for lexc = 244 nm the Raman signals between 1430 and1350 cm_1 were enhanced and assigned to n(CQC) of the isoquinoline (pyridino-) system.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.