Sandwich concept: Enhancement for direct absorption measurements by laser induced deflection (LID) technique

in: Temporal Proceedings (2012)
Mühlig, Christian; Bublitz, Simon; Paa, Wolfgang
The new sandwich concept for absolute photo-thermal absorption measurements using the laser induced deflection (LID) technique is introduced and tested in comparison to the standard LID concept. The sandwich concept’s idea is the decoupling of the optical materials for the pump and probe beams by placing a sample of investigation in between two optical (sandwich) plates. The pump beam is guided through the sample whereas the probe beams are deflected within the sandwich plates by the thermal lens that is generated by heat transfer from the irradiated sample. Electrical simulation and laser experiments reveal that using appropriate optical materials for the sandwich plates, the absorption detection limit for photo-thermally insensitive materials can be lowered by up to two orders of magnitude. Another advantage of the sandwich concept, the shrinking of the currently required minimum sample size, was used to investigate the laser induced absorption change in a Nd:YVO4 crystal at 1030nm. It was found that the absorption in Nd:YVO4 lowers due to the laser irradiation but partially recovers during irradiation breaks. Furthermore, absorption spectroscopy has been performed at two LBO crystals in the wavelength range 410…600nm to study the absorption structure around the SHG wavelengths of common high power lasers based on Neodymium doped laser crystals.

DOI: Array

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.