Self-Assembled Graphene/MWCNTs Bilayers as Platinum-Free Counter Electrodes in Dye-Sensitized Solar Cells

in: ChemPhysChem (2019)
Wahyuono, Ruri Agung; Jia, Guobin; Plentz, Jonathan; Dellith, Jan; Herrmann-Westendorf, Felix; Seyring, Martin; Presselt, Martin; Andrä, Gudrun; Rettenmayr, Markus; Dietzek, Benjamin
We describe the preparation and properties of bilayers of graphene- and multi-walled carbon nanotubes (MWCNTs) as an alternative to conventionally used platinum-based counter electrode for dye-sensitized solar cells (DSSC). The counter electrodes were prepared by a simple and easy-to-implement double self-assembly process. The preparation allows for controlling the surface roughness of electrode in a layer-by-layer deposition. Annealing under N2 atmosphere improves the electrode's conductivity and the catalytic activity of graphene and MWCNTs to reduce the I3¯ species within the electrolyte of the DSSC. The performance of different counter-electrodes is compared for ZnO photoanode-based DSSCs. Bilayer electrodes show higher power conversion efficiencies than monolayer graphene electrodes or monolayer MWCNTs electrodes. The bilayer graphene (bottom)/MWCNTs (top) counter electrode-based DSSC exhibits a maximum power conversion efficiency of 4.1% exceeding the efficiency of a reference DSSC with a thin film platinum counter electrode (efficiency of 3.4%). In addition, the double self-assembled counter electrodes are mechanically stable, which enables their recycling for DSSCs fabrication without significant loss of the solar cell performance.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.