Synthesis, characterization and optical properties of ytterbium (III) orthophosphates and their incorporation in different glass matrices

in: Journal of Physical Chemistry C (2021)
Veber, A.; Matthes, Anne; Müller, Robert; Wondraczek, Katrin; Petit, Laeticia; Salminen, Turkka
Nanosized hydrated YbPO4•nH2O powders were prepared by precipitation from aqueous solutions. It is shown that the structure, optical properties, and size of the raw particles can be further tailored by the subsequent calcination. The raw hydrous crystals transform into the anhydrous YbPO4 xenotime form after calcination at temperatures above 800 °C. In comparison with the hydrous form, the latter is characterized by a well-defined defect-free xenotime structure and multiple sharp peaks in the absorption and emission bands due to the splitting of Yb3+ 2F7/2 and 2F5/2 manifolds into multiple Stark sublevels as well as by a significant increase in the near-infrared photoluminescence intensity. It is demonstrated that the synthesized YbPO4 phosphors can withstand the corrosive behavior of phosphate glass melts; their reaction with silica glass at temperatures up to 2000 °C is negligible, and thus, YbPO4 particles can be used to prepare translucent glass−crystal composites.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.